
PEGASUS 5: AN AUTOMATED PRE-PROCESSOR FOR

OVERSET-GRID CFD

Norman E. Suhs

U.S. Army

Aviation & Missile Research, Development and Engineering Center

Redstone Arsenal, AL

Stuart E. Rogers

NASA Ames Research Center

Moffett Field, CA

William E. Dietz

Flow Analysis, Inc.

Tullahoma, TN

Abstract

An all new, automated version of the PEGASUS software has been developed and tested. PEGASUS

provides the hole-cutting and connectivity information between overlapping grids, and is used as the

final part of the grid generation process for overset-grid computational fluid dynamics approaches. The

new PEGASUS code (Version 5) has many new features: automated hole cutting; a projection scheme for

fixing gaps in overset surfaces; more efficient interpolation search methods using an alternating digital

tree; hole-size optimization based on adding additional layers of fringe points; and an automatic restart capability.

The new code has also been parallelized using the Message-Passing Interface standard. The parallelization

performance provides efficient speed-up of the execution time by an order of magnitude, and up to a factor of 30

for very large problems. The results of three example cases are presented: a three-element high-lift airfoil, a

generic business jet configuration, and a complete Boeing 777-200 aircraft in a high-lift landing configuration.

Comparisons of the computed flow fields for the airfoil and 777 test cases between the old and new versions of the

PEGASUS codes show excellent agreement with each other and with experimental results.

Introduction

The overset grid approach, also called the chimera grid-embedding scheme, has been developed and refined for

over 15 years. The strategy of this approach is to break a complex computational domain into smaller regions that

can each be represented by relatively simple grids. With this approach comes a major hurdle in creating the data

structure that specifies the inter-connectivity among the grids. The initial creators of the chimera grid-

embedding scheme (Ref. 1) developed the PEGASUS code to establish the data structure required for

communication among the overlapping structured meshes. Depicted in Fig. 1 is the relationship between

PEGASUS and the flow solver. Each mesh that makes up the domain is input into PEGASUS to determine the

inter-connectivity among the meshes, i.e., the interpolation data. The interpolation data that is passed to the flow

solver includes a list of the mesh points that are interpolated, the associated interpolation coefficients, and the

donor cell for each interpolated point. Also included in the interpolation data is a list of the points that are

removed (i.e., blanked) from the computational domain due to the fact that they are interior to a solid body.

These points are also known as hole points. The user inputs depicted in Fig. 1 specify how this interpolation data

is created.

There are several codes that perform the same basic functions as PEGASUS. These include DCF3D (Ref. 2),

Beggar (Ref. 3), FASTRAN (Ref. 4) and Overture (Ref. 5). Each of these codes produces some type of

interpolation data that is used by a flow solver. Additionally, each code has some level of automation to ease the

creationoftheinterpolationdata. PEGASUShasbeensuccessfullyusedwithOVERFLOW(Ref.6),NXAIR(Ref.

7),INS3D(Ref.8)andacell-centeredcode,DXEAGLE(Ref.9).

AsComputationalFluidDynamics(CFD)hasmaturedandaerodynamicconfigurationsofinteresthaveincreasedin

complexity,thegridsystemsusedinoversetmethodshavealsobecomemorecomplexandhaverequiredgreater

numbersofgridsforaccuraterepresentation.WithearlierversionsofPEGASUS,theuserinputrequiredforaccurate

holecuttingandinterpolationincreaseddramaticallywiththegeometriccomplexityof theconfiguration.Thisplaced

ahighpremiumonautomation,whichdefinedthemajorimpetusforthedevelopmentofthelatestversionof

PEGASUS.This paper presents a background of the process PEGASUS pertbrrns to produce the interpolation data,

along with a detailed discussion and demonstration of the automation of this process.

User Inputs

Interpolation
,Data
I _ Solution

Meshes

Fig. 1. PEGASUS/Flow Solver Relationship.

lra_q_ala/ed

1t _ Boundary

Inte_olated Otaer Boundarv

Fig. 2. General Concept of Overlapping Meshes

Background

ThegeneralconceptbehindthechimeraapproachisillustratedinFig.2,whichdepictstwoindependently

generatedmeshesrepresentingaflappedairfoil.Theflapmeshisembeddedwithintheairfoilmesh.Clearly,the

flapmeshouterboundarycanreceiveflow-fieldinformationinterpolatedfromappropriatemeshcells(often

referredtoasinterpolationstencils)withintheairfoilmesh.However,areverseprocessmustoccuraswell;the

airfoilmeshmustreceiveflow-fieldinformationfromtheflapmesh.Anartificialboundarymustbedefined

withintheairfoilmesh,sincecertainpointswithintheairfoilmeshareinteriortotheflapandthusdonotlie

withintheairfoil/flapflowfield.Theartificialboundarypointsoftheairfoilmeshthatarefullycontainedwithin

thecomputationalregionoftheflapmeshcanbeupdatedbyinterpolationfrommeshcellsoftheflapmesh.

Generally,anymeshcanreceiveinformationfromothermeshesthroughouterboundaryandartificialboundary

points.

The interpolation process is further illustrated in Fig. 3, which depicts a portion of the overlap region between the

airfoil and flap meshes. Airfoil mesh points that are contained within a certain region surrounding the flap are

excluded from the computational domain of the airfoil mesh. (In chimera terminology, they are "blanked" points,

or hole points.) The exclusion of points is accomplished by defining a hole creation boundary within the flap

mesh that will define the region within which all airfoil points are to be blanked. The points in the airfoil mesh

surrounding the blanked points are hole fringe points; they receive flow-field information interpolated from mesh

cells within the flap mesh. Correspondingly, points on the outer boundary of the flap mesh receive flow-field

information interpolated from mesh cells within the airfoil mesh.

[NOTE: Fig. 3 is missing the label for the flap-grid outer boundary, this will be fixed]

Fig.3.DetailViewofOverlapRegion

History of PEGASUS

The PEGASUS code has been a main component of the overset grid methodology since its inception and has gone

through many upgrades, increasing its generalization, speed, flexibility, and automation. The first version of

PEGASUS (Ref. 1), had limited connectivity and hole cutting capabilities. In particular, a grid hierarchy was

imposed, i.e., a grid could only cut a hole in a larger grid and could only interconnect with this larger grid.

Simple overlapping, with hole cutting, was not allowed. Additionally, the hole cutter was limited to specific types

of topologies. If a new topology was required, the PEGASUS code had to be modified to accept this new

topology.

Version 2 of PEGASUS (Ref. 10) added more generalization to the interconnectivity. With this generalization

there were no restrictions on the interconnectivity among the grids. Grids were allowed to cut holes in any

number of grids and to overlap or overset any number of grids. Still, hole cutters were limited to specific

topologies.

In version 3 of PEGASUS (Ref. 11), the bole cutting methods were generalized. Greater control was given to the

user in creating holes. Holes could be created by any number of surfaces from a single grid. This greatly

increased the complexity of geometries that could be handled. Additionally, the NAMELIST user input was

improved.

Version4ofPEGASUS(Ref.t2)continuedtheimprovementsinholecuttingbyallowingsurfacesfrommultiple

gridstocreateahole.Also,PEGASUS4includedarestartcapabilitythatwasparticularlyusefulformoving

bodyproblems.

Motivation for PEGASUS Version 5

As problem sizes increased, the number of inputs required in the version 4 PEGASUS input file increased

significantly. For example, a particular high-lift aircraft case (Ref. 13) that contained 153 meshes and 33

million grid points required over 17,000 lines of PEGASUS input. Generating this input file required many

weeks of work by an experienced user; this much input also created the potential for many user input errors. In

1996 the NASA Advanced Subsonic Technology/Integrated Wing Design program set a goal of reducing the

amount of time to produce a solution for an entire aircraft in a high-lift configuration. The automation of

PEGASUS was one of the objectives of this project, such that the user would have to provide little or no input to

the code. This paper is a presentation of the results of this effort by the authors. Unlike earlier versions of

PEGASUS, which borrowed heavily from earlier versions, PEGASUS 5 implements a completely redesigned

approach. An entirely new code was written from scratch, implementing new features and algorithms designed to

automate the process of oversetting structured overset grids. The new version was written in Fortran90, to take

advantage of dynamic memory allocation and programming features, such as pointers, that lend themselves to

particular requirements of establishing domain connectivity.

The following sections describe the code features, including minimization of user input, automatic hole cutting,

methods used for searching and selection of interpolation points, optimization of the holes and overlapping grid

regions, projection of overlapping viscous grid surfaces, and the automatic restart procedure. A description of the

paraUelization of the code is presented. Finally, three computational examples are presented, including

comparisons of flow-solutions obtained using the grid systems generated by both the old and the new PEGASUS

codes.

Automation of the Oversetting Process

There are three primary operations that PEGASUS performs to create the interpolation data required by the flow.

solver. The first of these steps is hole cutting. The mesh points that are within a solid body must be identified, so

that they can be removed from the computational domain by the flow solver. Looking back at Fig. 2, the airfoil

mesh points that are contained within the flap mesh must be identified. For two-dimensional grids, this process

appears to be relatively easy, but for three dimensions and multiple overlapping meshes the hole cutting process

can be difficult.

The second step is to identify the interpolation points. There are two types of interpolation points: hole-fringe

points and outer-boundary points (see Fig.s 2 and 3). The hole-fringe points are easily identified as any point

that has a hole-point as a neighbor. An outer-boundary point is any point which lies on the boundary of a

computational mesh and which will not be updated by a boundary condition within the flow solver.

The third step is the identification of the donor cells that will be used to update the interpolated fringe and

boundary points identified in the previous step. If a suitable donor cell cannot be found for an interpolation point,

the point is termed an "orphan".

The first two of these steps requires knowledge of the complete set of boundary conditions that are to be applied

by the flow solver onto each mesh. The PEGASUS 5 code, therefore, requires the flow solver boundary

conditions as part of its input. The format and definitions of the boundary conditions for this input was adopted

from the OVERFLOW code. Some grid-generation software provides a mechanism to produce an OVERFLOW

input file automatically. For example, the OVERGRID package (Ref. 14), which is part of the Chimera Grid

Tools (Ref. 15), has a feature that will automatically detect the appropriate boundary conditions for each mesh,

and write out both an OVERFLOW input file and a PEGASUS 5 input file.

Hole Cutting

Anautomatichole-cuttingcapabilityisprovidedwithPEGASUS5,althoughthemanualhole-cuttingapproaches

inpreviousversionshavebeenretainedtoprovideadditionalcontroloverthehole-cuttingprocess.Withthe

automatichole-cuttingapproach,agoodholestructureoftencanbedevelopedwithlittleornointerventionbythe

user.

Theautomaticholegenerationprocessisillustratedusingatwo-dimensionalexample(i.e.,a3-elementairfoil).

Figure4illustratesthesolidboundariesoftheairfoil,asdefinedin thePEGASUS5inputfile. Thedefinitionof

thesolidboundariesoftheconfigurationmustrepresentanair-tightsurface,withnogaps,holes,orleaks.If the

automaticallygeneratedororiginaluser-generatedboundaryconditionsdonotdefineanair-tightsurface,the

usercanspecifyadditionalboundaryconditionsin theinputfiletoaugmentthesurfaceandcloseanygaps.

d/ E___

Fig. 4. Three-Element Airfoil Solid Boundaries

The overall objective of the hole-cutting process is to partition the computational domain into "inside" and

"outside" regions. In PEGASUS 5, this is accomplished using Cartesian meshes, where it is desired to mark each

Cartesian element as an "inside", "outside", or "fringe" element. Spatial partitioning approaches used in previous

versions of PEGASUS were based on the use of surface normais. This approach exhibited many situations that

had to be dealt with as special cases, particularly when dealing with CFD configurations with surface

discontinuities.Instead,PEGASUS5 uses a hole-cutting approach that does not depend on surface normal

definitions, and therefore can accommodate surface discontinuities.

A Cartesian mesh is generated which fully encompasses the solid boundaries of the configuration. The elements

of the Cartesian mesh which intercept the solid surface elements of the airfoil are identified and designated as

fringe elements. Some of the fringe elements in the slat-wing region of the 3-element airfoil are depicted in Fig.

5.

Fig. 5. Fringe Elements

It is assumed that the comer elements of the Cartesian mesh are "outside" elements. Any unidentified (i.e,, non-

fringe) element that is adjacent to an outside element must itself be an outside element. The outside region is

thereby identified by a painting algorithm that marches from the corner elements inward until no more elements

that are adjacent to outside elements can be found. The outside region is thereby completely defined, and is

depicted in Fig. 6.

.... 2

Fig. 6. Outside Elements.

Finally, any element remaining that is not either an outside or fringe element must be an "inside" element. Inside

elements are depicted in Fig. 7.

Fig. 7. Inside Elements

The Cartesian mesh is now a completed "hole map". Given an arbitrary grid point, the Cartesian element within

the hole map in which the point resides can very quickly be identified. Points that are encompassed by "outside"

or"inside"elementsaremarkedasfieldpointsorholepoints,respectively.Pointsthatfallwithinfringeelements

canassumeeitheridentity,andthereforemustundergofurtherprocessing.PEGASUS5usesa"line-of-sight"

algorithmtodeterminethestatusof suchagridpoint.Thisalgorithmteststoseeif aclearline-of-sightexists

betweenthepointandanoutsideorinside(i.e.,non-fringe)element,andif so,thenthepointwill assumethe

identityofthatelement.A clearline-of-sightmeansthatavectorfromthepointtoaneighboringnon-fringe

elementdoesnotintersectthesolidsurfacecontainedin thefringeelement.Thisalgorithmis illustratedinFig.8.

Pointsthatcan"see"anoutsideelementarefieldpoints;pointsthatcan"see"aninsideelementareholepoints.

OUT'fOE

ELEMENT

{teMER r

_OLIO

ELEM_4_

IN_DE
ELEba_NT

Fig. 8. Line-of-Sight Algorithm

In the example of Fig. 8, Point A is outside. Point B is inside, and will be marked as a hole point.

Outer Boundary Specification

The automation of the outer-boundary point specification is straightforward, since all boundary conditions have

been supplied in the input file and are available to PEGASUS 5. The minimum and maximum index surfaces that

have not been specified as boundary conditions for the flow solver are designated as the outer boundaries, and

these points are added to the list of points that require interpolation stencils.

It can be desirable to have two layers of interpolation points at the hole fringes and at the outer boundaries. The

number of layers of interpolation points is known as the "fringe level". A fringe level of two has certain

advantages within the flow solver and can produce more accurate solutions. In the new code the user can set the

fringelevelforholesandouterboundarieswithasingleinput,orsetthefringelevelforholesandouter

boundariesseparately.It shouldbenotedthatnotallflowsolversaccommodateamixedsingle/doublefringe

levelofinterpolatedboundarypoints.

BoundaryPoint Interpolation

The identification of hole and outer boundary points is a starting point for the overlap optimization procedure

employed by PEGASUS 5. With optimized overlap, many points interior to the grid may ultimately be identified

as interpolated boundary points. Therefore, the interpolation process in PEGASUS 5 begins by searching for all

possible donor cells from all grids for every single grid point. This entire process is broken down into sub-

processes, each involving a pair of grids, one as the donor, the other as the recipient. Note that for any two grids

A and B, there are two sub-processes: one with grid A as the donor and grid B as the recipient; the other with grid

B as the donor and grid A as the recipient. There are N*(N-1) possible grid pairs, where N is the number of grids

in the configuration. Since the number of grid pairs grows as the square of N, the interpolation approach used by

PEGASUS 5 places a high premium on the efficiency of the interpolation process.

The interpolation sub-process for a given grid pair begins by testing the intersection of the two meshes, using

several different Cartesian and rotated Cartesian boxes. For each grid, these boxes are the smallest box that fully

surrounds all of the grid points, ff the boxes of the two different grids do not intersect, then no interpolation

between the grid pairs is possible. The sub-process next loops through every single grid point in the recipient

grid. Inside this loop it first tests to see if the grid point is inside the Cartesian boxes of the donor grid, and

discards the point if it is not. It then proceeds by searching for a donor grid cell that is "close" to the final

interpolation cell in the donor grid. This is accomplished efficiently through a spatial partitioning scheme; the

approach used in PEGASUS 5 is based on a data structure known as an Alternating Digital Tree (ADT), which is

described in Ref. 16. ADT structures are generated and stored for each mesh at the beginning of the program's

execution. Given a grid ADT and the recipient grid point, a "close" cell in the donor grid can be found very

quickly.

Oncea close donor cell is identified, a stencil-jumping algorithm is used to find the donor cell which contains

the recipient point. The stencil-jumping inverts the equations for tri-linear interpolation using a Newton

iteration. This solves for a delta in the computational index space which will point to a donor cell that contains

the recipient point. The Newton iteration generally requires a small number of iterations (-3-5), and the stencil-

jumping will typically converge in two or three jumps if the initial guess is close and the grid is smooth.

The stencil-jumping procedure has some additional enhancements to improve its robustness. One such

enhancement is the ability to detect and to "jump" across the computational boundary in a C-grid or in a periodic

O-grid. This is important because the initial starting point returned by the ADT may be close in physical space to

the final interpolation element, but may be much farther away in computational space.

Cell Difference Parameter

It is common in an overset grid system to have three or more grids overlapping in the same physical space.

Therefore, it is common that a particular boundary or fringe recipient point to have two or more possible donor

cells. A new algorithm has been implemented in PEGASUS 5 which is used to determine which of the possible

donor cells to select in this case. Previous versions of the PEGASUS code required the user to supply a prioritized

link list for each grid. This list specified which grids could act as donor grids for the given recipient grid and all

of its points. This approach not only required a lot of detailed input from the user, but it also unnecessarily

constrained the choices for the donor interpolation cells. The current approach avoids the global constraint for

each mesh, and instead examines the local cells in each individual case.

Experience has shown that the accuracy of a CFD simulation can be degraded when the size of the donor grid

cells in the overlapping region are a significantly different size than the recipient cell. This is due to the disparate

abilities of a coarse mesh to resolve a flow gradient as compared to a finer mesh. Based on this observation, the

new algorithm selects the best donor cell using a measure of the difference in size and orientation between the

donor and recipient cells. A qualitative measure of this difference has been developed, and is cailed the cell-

difference parameter (cdp). The cdp is defined as:

CDP=_(XDB, VB --XDIj

J=! XDBj VB

XDB I = Maximum component of the diagonals of the

boundary cell

Vn = the volume oflhe boundary cell

X DIj = Maximum component of the diagolta_ of Ille

interpolated cell

VI = tile volume of the interpolated cell

v,)

Values for the cell difference parameter will vary from 0 (the best) to very large values. Examples of the cdp are

shown in Fig. 9 tbr different pairs of two-dimensional cells.

Int_pol_

Born do.,, Poi_'_ l:,tterp 01m_,n
Call b-'m_cfl

G
D []

I =

Cell _fl,_mce

Og

O0

n5

10

2O

O_

9.9

4.9

Fig. 9. Examples of Cell-Difference Parameter

Overlap Optimization

The final step in creating a good solution to the connectivity of overset grids requires some type of overlap

optimization. In previous versions of PEGASUS, it was left up to the user to determine how much overlap to

leave between neighboring grids and where the overlap boundaries should occur. This required a significant

amount of user expertise and time. PEGASUS 5 provides an automated approach to optimizing the overlap.

Again, a new algorithm has been developed on the premise that the donor and the recipient interpolation cells

should be of similar size.

The overlap optimization process in PEGASUS 5 is robust and requires no user interaction. This process is

performed after the automatic hole-cutting and the outer boundary points and their donor cells have been

identified.

The overlap optimization method is based on a philosophy that the finest mesh points are kept as part of the

computational domain while the coarser mesh points should be interpolated from the finer mesh points. To

demonstrate the steps required to achieve the overlap optimization, three one-dimensional meshes will be used

(see Fig. 10a). Mesh A is stretched from fine to coarse, Mesh B is stretched from coarse to fine, while Mesh C

has constant spacing that is coarser than both Mesh A and Mesh B.

The first step is to interpolate between the mesh pairs. Starting with Meshes A and B, Mesh A interpolates all

points from Mesh B and Mesh B interpolates all points from Mesh A. Then, only the coarser interpolated mesh

points (i.e., those points that are interpolated from finer mesh regions) are kept (see Fig. 10b). The arrows in this

figure and the remainder of Fig. 10 indicate the direction of the data flow. The head of the arrow points to the

interpolated point, while the tail indicates the cell that donates data to the interpolated point.

In step 2, the interpolated points identified in step 1 are checked to determine if they are also part of a donor cell.

If an interpolated point is part of a donor cell, it is removed as an interpolated point. The result for Mesh A and

Mesh B is shown in Fig. 10c. Steps 1 and 2 are repeated for Mesh A to Mesh C pair and the Mesh B to Mesh C

pair. The results for Steps 1 and 2 for these mesh pairs are shown in Fig.s 10d and 10e.

Tocompletetheoverlapoptimizationprocess,eachpointthatisinterpolatedinameshisevaluatedtodetermine

whichinterpolationis tobekept.ff onlyasingleinterpolationhasbeenidentifiedforapoint,thatinterpolationis

kept.If morethanoneinterpolationhasbeenidentified(duetomultiplemeshoverlap),theinterpolationwiththe

smallestcdpiskept.Usingthisprocedure,theresultinginterpolationsandfieldpoints(non-interpolatedpoints)

areshowninFig.1Of.ThefieldpointsinFig.1Ofshowtheeffectiveoptimizedoverlapthatresultsfromthis

approach.ItalsoshowsthatMeshC no longer has any active field points in this region because it is coarser than

any of the other meshes with which it overlaps.

_t_zll A

__.a a a __a _ _ _ 4g--

Moda IS

--_I----H-O-----_--O -- ¢, _. "-O----O

MQsh C

a. One Dimensional Meshes

M_A

• ,L ,t,

l Arrow denotes direction of reformation flow

b. Step 1: Interpolate Between Meshes Keeping Only Coarser Mesh Points

MQ*h A

c. Step 2: Remove Interpolated Points That Are Part of a Donor Cell

M_nh A

Melh B

______________._---------_--

d. Step 1 Repeated for Other Meshes

Mes,_ A

--A _ A ,L A A _

Me_ B

e. Step 2 Repeated for Other Meshes

Mesh A

M.°c l
v

Field Points

f. Step 3: Keep Finest Mesh Points

Fig. 10. Overlap Optimization Procedure

In Fig. 11, an example of two overlapping meshes and the resulting optimized overlap is shown. It can be seen

that this procedure keeps the overlap region away from the tightly packed boundary layer region of both meshes.

In Fig. 12, the resulting optimized overlap is shown for three meshes. The optimized overlap that is produced in

this case would be very difficult to specify manually, and would be nearly impossible in three-dimensions.

(

)

a. Non-optimized Overlap

,?

b. Optimized Overlap

Fig. 11. Flap/Airfoil Example

 A4z:

a. Non-optimized Overlap

b. Optimized Overlap

Fig.12.ThreeMeshExample

Projection for Viscous Grids

The oversetting process gives the user great flexibility in how the surface of a body is sub-divided into topologies

that ease grid generation. As geometry has increased in complexity and the need for viscous solutions has

increased, a problem with the overset approach for viscous grids has arisen. The problem, which is created by the

linear discretization of curved surfaces, has manifested itself in two forms. These two forms are depicted in Fig.s.

13a and 13b, which depict two overlapping grids on a curved surface. The scale of these grids and the curvature

of the surface is exaggerated in these figures to clarify the problem. The first problem type occurs for a concave

surface (Fig. 13a). The surface points for both grids lie on the true surface of the body, but have points that do not

have legal interpolation stencils. Therefore, any of these points that must be interpolated from the other mesh

would be orphan points. This form of viscous interpolation problem is easily identified. The second form of

viscous interpolation errors occurs for a convex surface (see Fig. 13b) and is not as easy to identify. In this form,

the recipient points that require interpolation can find donor cells, but these donor cells are located much further

away from the wall than the recipient points. Therefore, recipient points in the near-wall region of the boundary

layer will receive data from cells in the outer region of the boundary layer. These viscous interpolation errors

manifest themselves as large velocities near the surface. This error can lead to incorrect boundary layer profiles

and significant errors in the flow solution.

rJ I _,

a. Concave Surface

!

I

I

\

b.. Convex Surface

Fig. 13. Viscous Surface Interpolation Problems.

To correct this problem, the PROGRD code (Ref. 17) was developed. PROGRD is used to modify the grids prior

to the interpolation process in PEGASUS. PROGRD, which projects one grid onto another, changes the final

grids that are used in the flow solver. This approach leaves the user with a geometry that has been changed from

the original, i.e., grid points that originally were on the solid surface are physically moved to faces of elements in

a donor mesh.

The approach in PEGASUS 5 is to bring the PROGRD methodology into PEGASUS and project the grids, but

only for determining the interpolation indices and coefficients. The original surfaces of the geometry are retained.

The process is depicted in Fig. 14. The first step in this process is to project the recipient mesh onto the donor

±............

mesh; points in the recipient mesh are then interpolated. The projected mesh is then discarded and only the

interpolation indices and coefficients for the recipient mesh are retained. The process is then repeated for the

mesh pair; this time with the identities of the donor and recipient meshes reversed. As before, only the

interpolation indices and coefficients are retained. This process is repeated for all mesh pairs that have

overlapping surfaces.

Recipient M_sh Donor Mesh

a. Projection of Recipient (Red) Mesh.

\,," i

.... Recipient .Mesh _ Donor Mesh

b. Projection of Recipient (Blue) Mesh

Fig. 14. Mesh Projection by Mesh Pair

ResOrting

PEGASUS 5 is highly automated and will often yield excellent results with minimal input. However, there are

occasions where some modification to the input is necessary to provide suitable communication among meshes in

a complex chimera system. For example, a user may decide to modify a single grid in the system. A single grid

will typically communicate only with a few other grids in the system. As a result, most of the information

previously generated (i.e., interpolation coefficients between the other grids) are valid, and should not have to be

repeated.

PEGASUS 5 employs a unique restarting capability whereby only processes that involve dependices on the

modified input are repeated. PEGASUS 5 automatically determines what work needs to be performed to complete

a restart execution. In this manner, a user can refine the PEGASUS 5 solution incrementally and inexpensively,

rather than by repeating the entire solution for each input modification. In fact, restarting in PEGASUS 5 is very

similar to using the UNIX "make" utility, in that previously performed processes that are independent of local

changes are not repeated.

Parallelization

A parallel version of the PEGASUS software was developed using the Message Passing Interface (MPI) standard.

The architecture of the PEGASUS 5 software was designed from the very beginning to be very amenable to

coarse-grained parallelization. Nearly all of the computations done in the code consist of a number of operations

using data from either an individual mesh or pairs of meshes. These operations include surface projections

between all mesh pairs, building alternating-digital trees (ADTs) for each mesh, interpolation stencil searches

between all mesh pairs, hole-cutting operations on individual meshes, and boundary point identification on

individual meshes. Most of these operations are independent of each other and can be performed simultaneously.

However, there are some processes that are required to be handled sequentially with respect to each other, e.g., all

projection operations must precede all of the interpolation operations. The parallelization was implemented by

creating a single master process, and NP-1 worker processes, where NP is the number of MPI processes assigned

to the job. The master initializes the entire PEGASUS execution, and then asynchronously assigns individual

operations to each of the workers. Once a worker reports back to the master that it has completed its operation,

the master sends it a new operation to perform. Figure 15 shows a graphical representation of the operations being

performedduringanactualPEGASUS5execution by each of the workers as a function of time, where a total of

15 processors (14 workers) were used. A close-up view of some of the operations is shown in Fig. 16. This

shows worker processors computing the ADT operations, the interpolation operations, and an automatic-hole

boundary' operation. Notice that most workers become idle for a brief time waiting for the last ADT operation to

complete before the interpolation operations are initiated.

Level 1
Inte,la, olaU o_-1

Fig.. 15. PEGASUS 5 Operations versus Time, (Harrier Jet Grid System)

Fig.. 16. Close-up View of the Operations being Performed by Worker Processes

The test case used in Fig.s 15 and 16 was the processing of a grid system for a Harrier jet in a hover mode; this

grid system was used in the computational study by Chaderjian et al.(Ref. 18). The Harrier grid system contains

52 meshes, and the PEGASUS 5 execution required 2429 separate operations. Figure 17 shows the parallel

performance of PEGASUS 5 running the Harrier problems on both an SGI Origin O2K amd Origin O3K at NASA

Ames Research Center (named "Lomax" and "Chapman" respectively). The straight dashed line in the figure

representsthetheoreticalmaximumspeedupif allNP-I workersarekeptbusyallofthetime.Goodparallel

performanceisseenuptoabout16processors,afterwhichtheparallelspeedupasymptotesatamaximumofa

factorof 14.Theasymptoticbehavioroftheparallelspeedupisexpectedforthiscoarse-grainedapproach.The

finalprocess,labeledastheXINTOUTprocessinFig.15,isperformedinserialinthecurrentapproach.This

operationisthelaststepin thecodeinwhichallthefinalinterpolationstencilsaregatheredandwrittentothe

finaloutputfile.

Fig.17.ParallelPerformancefortheHarrierJetConfigurationonSGIOriginO2KandO3KSystems

OneneednotrunPEGASUS5onalargeparallelsystemtotakeadvantageoftheparallelization.Forinstance,a

userworkingonadual-processorworkstationcanutilizethiscapabilitytoreducethePEGASUS5execution

turn-aroundbyafactorof two. This enables a user to effectively perform overset grid connectivity for a complex

three-dimensional problem in one day, which represents at least order of magnitude improvement over the use of

the old PEGASUS 4 code. The earlier version would often require on the order of 10 to 20 days to perform such

an operation, (see Ref. 19), and requires significantly greater user expertise than is required by PEGASUS 5. The

realization of a production-ready code to automatically perform the overset pre-processing represents a major

step toward realizing the 1996 strategic goal of the NASA/Boeing Advanced Subsonic (AST) Program of reducing

cycle time for a complex 3D problems from hundreds of days to 5 days (see Ref. 19).

Examples

ThreeexamplePEGASUS5testcasesarepresented.Theyareathree-elementhigh-liftairfoil, a generic

business jet configuration, and a Boeing 777 aircraft in a landing configuration. The user modifications to the

input and the required computing resources are described for each case. For the first and last cases, flow solutions

have been computed using the results of both PEGASUS 4 and PEGASUS 5 connectivity files. These flow

computations utilized the OVERFLOW (Ref. 6 and 20) flow solver.

Two types of input files are required by the PEGASUS 5 software: the volume grid files, and a text input file. The

grid files contain the coordinates for each individual mesh, and the text file contains the boundary conditions, and

possibly other input variables to customize the behavior of the software. There are several utility programs that

come with the PEGASUS 5 software to aid in the generation of these input files. If one is preparing a grid system

for use by the OVERFLOW flow solver, the user need only supply the OVERFLOW input file (containing all of

the boundary conditions), and a composite grid file containing the coordinates of all of the individual meshes. A

script ("peg_setup") reads these two files and generates all of the input files required by PEGASUS 5. This

method was used for each of these examples.

A description of all of the possible input variables recognized by PEGASUS 5 is beyond the scope of this paper.

The most commonly used input variable which a user might need to modify to fix problems with the automatic

hole cutting operation is the OFFSET input variable. This variable may be specified globally for all meshes at

once, or independently for each individual mesh. The default value of OFFSET is zero. Values greater than zero

cause the code to enlarge any holes in a particular mesh. It does this by examining every point in a mesh; if a

point is within OFFSET cells of a hole point, then it too gets blanked.

Multi-Element Airfoil

The first test case is a two-dimensional three-element airfoil known as the 30P30N configuration (Ref. 21),

which was built and tested extensively by the former McDonnell-Douglas company and NASA Langley Research

Center. It has been commonly used as a high-lift CFD validation configuration. The airfoil consists of a main

wingsectionwithaleading-edgeslatandatrailing-edgeflap.Thegridsystemconsistsof sevenzonesand

313,000gridpoints.Theseoversetgridswereusedpreviouslyasatestcaseforanautomatedgrid-generation

procedure(Ref.22)whichusedthePEGASUS4software.

TheonlymodificationtotheautomaticallygeneratedPEGASUS5inputfilewastoincreasetheglobalOFFSET

variableto2,andtosettheOFFSETvariabletoavalueof5forbothofthe"box"grids.PEGASUS5ranin65

secondsonasingleSGIR10000250MhzCPU.DetailsoftheresultinggridsystemareshowninFig.s18and19.

Figure18depictstheslatandwinggridsattheslattrailingedgeandwingleadingedge.Thesymbolsindicatethe

locationoffringepoints,whichareboundarypointsinagridthatwill receiveinterpolationboundaryconditions

fromitsoverlappingneighbor.Figure18ashowsallofthefringepoints;Fig.18bshowsonlyfringepointswhich

areoneortwopointsawayfromanactiveinteriorpoint.ThusFig.18ashowstheactualholecutbyPEGASUS5;

Fig.18bshowstheeffectivehole.Notethattheactualholein thewinggridistooclosetotheslattrailingedge.

ThisisbecausetheCartesianhole-maptypicallydoesnothaveenoughresolutiontoresolveanextremelythin

trailingedge.However,ascanbeseeninFig.18b,theeffectoftheinterpolationoptimizationis tocreatealarger

holein thewingneartheslattrailingedge.

a. All FringePoints

b. FirstandSecondFringePoints

Fig.18.Fringe Points Near the Slat Trailing Edge

Figure 19 shows the grids around the wing and the flap in the vicinity of the wing trailing edge and the flap

leading edge. Again the symbols mark the fringe points. Figure 19a shows the actual hole, and Fig. 19b shows

the effective hole.

The resulting grid system was used to compute a solution with the OVERFLOW flow solver. A flow solution was

also computed for a grid system obtained by running the PEGASUS 4 code with the same meshes used by

PEGASUS 5. For these computations the free-stream Mach number was 0.2, the Reynolds number was 9 million,

and the angle of attack was 8.1 degrees. Very similar results were obtained for both grid systems. Figure 20 plots

the pressure coefficient results for these calculations together with some experimental results for this geometry.

The experimental values are plotted with the circles, the PEGASUS 4 results are plotted with a dashed line, and

the PEGASUS 5 results are plotted with a solid line. Although the CFD results have suction peaks that are higher

than the experimental results, there is no visible difference between the PEGASUS 5 and PEGASUS 4 results.

a.All FringePoints

b. FirstandSecondFringePoints

Fig.19.FringePointsNeartheWingTrailingEdge

-I-

0

0,5 1

X.'C

Fig. 20. Pressure Coefficient Results on Three-Element Airfoil

Business Jet

This test case is a generic business jet geometry consisting of a fuselage, wing, and an aft-mounted pylon and

nacelle. The grid system consists of 13 meshes and 3.5 million grid points. Two modifications were made to the

automatically generated input file in order to produce a high-quality grid system. The first of these changes was

to increase the global value of the OFFSET parameter from 0 to 1, and to increase the OFFSET value to 2 for the

nacelle mesh. This improved the automatically-generated holes and blanked some points that were left inside the

thin trailing edges of the wing, the pylon, and the nacelle during the initial run. The second change was the

"unblanking" of an automatic hole that was being cut into the surface grid of the wing fillet. This type of

undesirable automatic hole cut can occur where two or more surface grids overlap in a region with significant

surface curvature• When this occurs it can usually be fixed very easily by specifying a range of grid indices in the

input file where PEGASUS 5 is not allowed to cut any holes.

With the addition of these changes to the input file, PEGASUS 5 produces a good-quality grid system for this

case. The code required 30 minutes of CPU time on a single SGI R10000 250Mhz CPU for the initial run using

the automatically generated input file. After making the above changes to the input file, the restart execution

required only 2.5 CPU minutes. The resulting grid was left with only 19 orphan points, i.e., boundary or fringe

pointsforwhichthecodewasunabletofindanacceptableinterpolationdonorcellfromaneighboringmesh.

smallnumberoforphanpointsisconsideredacceptablebypractitionersofoversetCFDmethods.Mostflow

solvers,suchasOVERFLOW,haveaproceduretoupdatethedependentvariablesatORPHANpointsby

averagingthedependentvariablesfromadjacentcomputedgridpointsinthesamemesh.

A

Figure21showsthefringeandboundaryinterpolationpointsinthesymmetryplane,wheretheyaremarkedwith

circles.The rectangular-shaped grid cells are part of an inner-box mesh that surrounds the body-fitted meshes.

The grid system also contains an outer box mesh that extends to the far-field boundary which is not shown in the

figure. The figure shows the double-row of outer boundary points belonging to the inner box mesh which receive

interpolated information from the outer box mesh. The darker symbols surrounding the airplane show the outer-

boundary points of the fuselage mesh which receive interpolation from the inner box mesh. The lighter symbols

show the fringe points surrounding the hole cut in inner box mesh; these receive interpolated information from the

fuselage mesh. Figure 22 shows grid planes in a constant stream-wise plane which intersect the center of the

nacelle and pylon. This figure also shows the symbols denoting all of the fringe and outer boundary interpolation

points in these grid planes. This figure shows the complex intersections of the nacelle grid, the two pylon grids,

the fuselage grid, and a box grid which surrounds the pylon and nacelle.

Fig. 21. Business Jet Fringe Points in the Symmetry Plane

_ . --

Fig. 22. Business jet Fringe Points Surrounding the Nacelle

Boeing 777 Aircraft

The final example is by far the most complex geometry used to test PEGASUS 5: a Boeing 777-200 aircraft in a

landing configuration with 30-deg flap deflection. Figure 23 shows the surface grids used for this case, with only

every fourth grid point plotted in each direction for clarity. The geometry includes the fuselage, vertical tail,

wing, pylon, flow-through nacelle and core cowl, inboard and outboard slats, a leading-edge krueger slat,

double-slotted inboard flaps, flaperon, and outboard flap, and the three largest flap-hinge fairings. Figure 24

shows the view of the surface grids from underneath the aircraft, looking inboard at the flaps and the inboard

flap-hinge fairing. The grid system for this geometry was originally developed by Rogers et al. (Ref. 23) as part

of the NASA and Boeing Advanced Subsonics Technology Program. This geometry was used as a demonstration

case to meet a program milestone requiring a complete high-lift aircraft CFD simulation to be performed in 50

labor days. The milestone was met by computing the first solution, with just the CAD definition as the initial

starting point, with 48 labor days of effort. Of this time, 32 labor days were required to perform the over-setting

of the volume grids using the PEGASUS 4 software.

Fig.23. SurfaceGridsonBoeing777-200

: !L

Fig. 24. Underside View of Flaps and Flap-Hinge Fairing

The 777 volume grids consist of 79 meshes and 22.4 million grid points. For this problem, PEGASUS 5 initially

was executed on 16 processors of an SGI Origin O2K system. The code required 40 minutes to run from start to

finish, in which just over 9 CPU hours of execution time was accumulated, for a parallel efficiency of 85%. After

the initial run of the code, it was apparent that the default automatic hole cutting did not have nearly enough

resolution for the wide range of length scales in this problem. In particular, the small gaps between the high-lift

elements are about three orders of magnitude smaller than the fuselage length and the wing semi-span. Thus the

first modification made to the default PEGASUS 5 input was to create a number of additional automatic

Cartesian-hole maps. Each of the high-lift elements which formed a fully-enclosed surface were used to create a

separate hole cutter; this included the two slat elements and three of the four flap elements. The hole-cutter

composedofthefuselageandwingwassplitspanwiseintothreeseparateholecutters.Thiswasquite easy to

accomplish by manually specifying the minimum and maximum coordinates for each cutter. Each of these three

hole-cutters was also given 50% increased resolution in both longitudinal and vertical directions. After re-

running PEGASUS 5 with these eight automatic hole-cutters, the input was further refined by increasing the

OFFSET value to 1 or 2 for nearly half of the meshes. It was also found that a large number of orphan points

were created because the default limits on the surface-to-surface projections were too restrictive. The maximum

allowable projection distance was increased by 50% to fix this problem. Finally, two regions of some

overlapping grids near the surface had to be "unblanked" to correct for some bad hole cutting through the surfaces

of some overlapping grids.

After these input-file modifications, a final grid system was obtained which contained just under 1200 orphan

points. This compared very favorably to the grid system createdby PEGASUS 4, which had just under 5600

orphan points. The total labor time spent running and modifying the PEGASUS 5 inputs was three days, an order

of magnitude decrease of the 32 days required by PEGASUS 4 for these same volume grids. Furthermore, the

input modifications required for PEGASUS 5 were significantly simpler compared to the user input required by

PEGASUS 4.

Subsequent runs of PEGASUS 5 for the 777 grid system were performed to test the parallel performance of the

code. The parallel speed-up for the 777 was better than for the Harrier grid system, as it was able to benefit from

the use of more processors. The 777 grids were run on 48 SGI Origin processors, which provided a speed-up of a

factor of 33 over the use of a single processor. Using 48 processors, the code was able to process the 777 grids in

less than 13 minutes.

The OVERFLOW code was run using this new PEGASUS 5 grid system in order to compare with the computed

flow results from the PEGASUS 4 grid system. Several angles of attack were run, matching the PEGASUS 4

cases reported in Ref. 23. The Mach number was 0.2, and the Reynolds number based on the mean aerodynamic

chord was 5.8 million. The lift coefficients for these new runs are plotted in Fig. 25, together with the previous

computational results and experimental results for this geometry.

i

Fig. 25. Lift Coefficient versus Angle of Attack, Comparing OVERFLOW Results for the PEGASUS 4 and

PEGASUS 5 Grid Systems

The actual value of the lift coefficient is not included on the vertical axis labels due to the proprietary nature of

this data. it can be seen that the PEGASUS 5 results match very well with the PEGASUS 4 computations. The

new results show a slight decrease in lift at the negative angles of attack, further away from the experimental data,

and a slight increase in lift at the highest angles of attack, where the computed solution has stalled over the

inboard portion of the wing. Thus the computational results fail to predict maximum lift; a discussion of the

possible reasons for this is given in Ref. 23. However, the computational results do agree well with the

experimental data at angles of attack of 12 degrees and lower, and at typical approach conditions, the computed

lift is within 1.5% of the experimental lift.

Conclusion

The newest version of PEGASUS, version 5, has been automated to reduce the number of user inputs and the time

required to determine the inter-connectivity between overlapping meshes.Automation of the hole cutting and

outer boundary specification is based on the inputs required by the flow solver, which can be automatically

generated by other readily available overset-CFD software. This greatly decreases the user input requirements.

Additionally,theoverlapoptimizationandviscousinterpolationprojectionimprovetheinter-connectivity

solutionsthatareproducedbyPEGASUS5.

ThemodulardesignofthePEGASUS5softwaremadeit straightforwardtoimplementacoarse-grainparallel

approachusingtheMPImessagepassinglibrary.Theparallelversionofthecodewill alwaysreproducethesame

resultsastheserialversion.It exhibitsefficientexecutionspeed-upforamodestnumberofprocessors,

dependingontheproblemsize.Overfactorof33speed-upon48processorswasobtainedfortheBoeing777-

200testcase.

ThecomputedOVERFLOWresultsillustratethatgridsystemsproducedbythenewversionofPEGASUSleadto

thesameresultsasthosefromtheoldversion,butatasignificantcostsavingsintermsofbotheffortandrequired

userexpertise.TheamountofusertimeandexpertiserequiredfortheBoeing777-200aircraftwasanorderof

magnitudelessthatthatrequiredbythePEGASUS4codeforprocessingthesamevolumegrids.

References

1. Benek, J.A., Dougherty. F.C., and Buning, P.G., "Chimera: A Grid-Embedding Technique," AEDC-TR-85-

64, December 1985.

2. Meakin, R.L. "Object X-rays for Cutting Holes in Composite Overset Structured Grids," AIAA Paper 2001-

2537, June 2001.

3. Belk, D.M. and Maple, R.C., "Automated Assembly of Structured Grids for Moving Body Problems," AIAA

95-1680, June 1995.

4. Wang, Z.J., Parthasarathy, V., and Hariharan, N., "A Fully Automated Chimera Methodology for Multiple

Moving Body Problems," AIAA 98-0217, January 1998.

5. Brown, D.L., Henshaw, W.D., and Quinlan, D.J., "Overture: Object-Oriented Tools for Overset Grid

Applications," AIAA conference on Applied Aerodynamics, UCRL-JC-134018, 1999.

6. Buning, P. G., Jespersen, D. C., Pulliam, T. H., Chan, W. M., Slotnick, J. P., Krist, S. E., Renze, K. J.,

"OVERFLOW User's Manual, Version 1.8b," NASA Langley Research Center, Hampton VA, 1998.

7.Tramel,R.,andNichols,R.,"AHighlyEfficientNumericalMethodforOverset-MeshMoving-Body

Problems,"AIAAPaperNo.97-2040, June 1997.

8. Rogers, S.E., Kwak, D., and gaffs, C., "Numerical Solution of the Incompressible Navier-Stokes Equations for

Steady-State and Time-Dependent Problems," AIAA Paper 89-0463, Jan. 1989. Published in AIAA Journal, Vol.

29, No. 4, Apr. 1991, pp. 603--610.

9. Lijewski, L.E., and Suhs, N.E., "Time-Accurate Computational Fluid Dynamics Approach to Transonic Store

Separation Trajectory Prediction," Journal of Aircraft, Vol. 31, No.4, pp.886-891, Jul.-Aug. 1994.

10. Benek, J.A., Donegan, T.L. and Subs, N.E., "Extending the Chimera Grid Embedding Scheme with

Applications to Viscous Flow." AIAA Paper No. 87-1126, June 1987.

11. Dietz, W.E. and Subs, N.E., "PEGSUS 3.0 Users Manual." AEDC-TR-89-7, August 1989.

12. Subs, N.E. and Tramel, R.W., "PEGSUS 4.0 Users Manual," AEDC-TR-91-8, November 1991.

13. Slotnick, J. P., An, M. Y., Mysko, S. J., Yeh, D. T., Rogers, S. E., Roth, K. R., Nash, S. M., and Baker, M. D.,

"Navier-Stokes Analysis of a High-Wing Transport High-Lift Configuration With Externally Blown Flaps,"

AIAA Paper 2000-4219, Aug. 2000.

14. Chan, W., "The OVERGRID Interface for Computational Simulations on Overset Grids," AIAA Paper 2002-

3188, June 2002.

15. Chart, W. M., Rogers, S. E., Nash, S. M., Buning, P. G. and Meakin, R. L., "User's Manual for Chimera Grid

Tools," Version 1.6, http://www.nas.nasa.gov/-rogers/cgt/doc/man.html, NASA Ames Research Center, Oct.

2001.

16. Bonet, J. and Peraire, J., "An Alternating Digital Tree (ADT) Algorithm for 3D Geometric Searching and

Intersection Problems," International J. Numerical Methods in Engineering, Vol. 31, 1991, pp. 1--17.

17. Chan, W., Buning, P. G., and Krist, S. E., "PROGRD User's Manual, Version 0.5," NASA Ames Research

Center, Moffett Field, CA, Aug. 1998.

18. Chaderjian, N. M., Pandya, S., Abroad, J., and Murman, S. M., "Parametric Time-Dependent Navier-Stokes

Computations for a YAV-8B Harrier in Ground Effect," AIAA Paper No. 2002-0950, January 2002.

19. Rogers, S. E., Roth, K., Nash, S. M., Baker, M. D., Slotnick, J. P., Whitlock, M., and Cao, H. V., "Advances

in Overset CFD Processes Applied to Subsonic High-Lift Aircraft," AIAA Paper 2000-4216, August, 2000.

20.Jespersen,D.C.,Pulliam,T.H.,andBuning,P.G.,"RecentEnhancementstoOVERFLOW,"AIAAPaper

97-0644,Jan.1997.

21.Chin,V.,Peters,D.,Spaid,F.,andMcGhee,R.,"FlowfieldMeasurementsaboutaMulti-ElementAirfoilat

HighReynoldsNumbers,"AIAAPaper93-3137,July1993.

22. Rogers,S.E.,Cao,H.V.,andSu,T.Y.,"GridGenerationForComplexHigh-LiftConfigurations,"AIAA

Paper98-3011,June1998.

23.Rogers,S.E.,Roth,K.R.,Cao,H.V.,Slotnick,J.P.,Whitlock,M., Nash,S.M.,andBaker,M.D.,

"ComputationOfViscousFlowForA Boeing777AircraftInLandingConfiguration,"AIAAPaper2000-4221,

Aug.2000.PublishedinJournalofAircraft,Vol.38,No.6,Dec.2001,pp.1060-1068.

